
Bayesian target encoding
Documentation

Akshay Gupta

Nov 24, 2022

QUICKSTART

1 Installation 3

2 Contents 5
2.1 When should you use this package? . 5
2.2 Encode your categorical variables . 9
2.3 Build a model through repeated encoding . 10
2.4 Encoding algorithm . 11

i

ii

Bayesian target encoding Documentation

bayte offers a lightweight, scikit-learn-compliant1 implementation of Bayesian Target Encoding. The algorithm
was introduced in 2019 by Slakey et al.2, with ensemble modeling methodology from Larionov3. Our explanation of
the algorithm is available here.

1 Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre
Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning software:
experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 108–122. 2013.

2 Austin Slakey, Daniel Salas, and Yoni Schamroth. Encoding categorical variables with conjugate bayesian models for wework lead scoring
engine. CoRR, 2019. URL: http://arxiv.org/abs/1904.13001, arXiv:1904.13001.

3 Michael Larionov. Sampling techniques in bayesian target encoding. CoRR, 2020. URL: https://arxiv.org/abs/2006.01317, arXiv:2006.01317.

QUICKSTART 1

http://arxiv.org/abs/1904.13001
https://arxiv.org/abs/1904.13001
https://arxiv.org/abs/2006.01317
https://arxiv.org/abs/2006.01317

Bayesian target encoding Documentation

2 QUICKSTART

CHAPTER

ONE

INSTALLATION

To install bayte from PyPI, run

$ python -m pip install bayte

This is the preferred method to install bayte.

3

Bayesian target encoding Documentation

4 Chapter 1. Installation

CHAPTER

TWO

CONTENTS

2.1 When should you use this package?

We have leveraged the experimental framework discussed by Pargent et al.1 to analyze bayesian target encoding (BTE)
and answer the following questions:

• Marginal BTE: Is there lift from a staged approach:

1. Fit a submodel*0 that uses all non-categorical columns to predict the target.

2. Fit the encoder using the submodel output as the target.

3. Use the encoding and the raw input non-categorical data to fit the final model.

2.1.1 Encoder comparison

In this experiment, we wanted to compare the standard bayesian target encoding to other popular encoding methodolo-
gies. We also wanted to test a “staged approach”, where we

1. fit a submodel that uses all non-categorical columns as features,

2. fit the encoder using either the submodel output (the “marginal” approach) or the residuals as the target, and

3. use the encoding and raw numeric features to fit the final model.

The idea here is that the categorical encoding can try to use the information not captured by numeric variables and
produce a more useful encoding.

The aggregated visualization doesn’t show this well, but we have three takeaways from this experiment:

1. Non-sampled bayesian target encoding does not outperform other encoding methods,

2. Sample bayesian target encoding performs the best, and

3. marginal/residual encoding provides very incremental benefit at best.
1 Florian Pargent, Florian Pfisterer, Janek Thomas, and Bernd Bischl. Regularized target encoding outperforms traditional methods in supervised

machine learning with high cardinality features. 2021. arXiv:2104.00629.
0 What if the encoder is fitted using the residuals from the submodel as the target?

5

https://arxiv.org/abs/2104.00629

Bayesian target encoding Documentation

Fig. 1: (m) indicates that the encoder used the “marginal” approach. (r) indicates that the encoder uses the “residual”
approach.

6 Chapter 2. Contents

Bayesian target encoding Documentation

2.1.2 Ensemble methodology2

We wanted to answer the following questions:

• How much does repeated sampling help?

• How many samples do you need?

The short answer is that repeated sampling will almost definitely help with test performance. Only two datasets, churn
and flight-delay-usa-dec-2017, saw decreases in test performance.

Surprisingly, only 25 samples are required to see an increase in performance.

2.1.3 Comparative encoding methodology

When conducting these experiments, we’ll compare BTE to the following encoding methodologies. Suppose you have
𝑛 training observations, with 𝑌 = (𝑦1, ..., 𝑦𝑛) representing the target and categorical variable 𝑋1 = (𝑥1, ..., 𝑥𝑛) with
distinct values 𝑉 = (𝑣1, ..., 𝑣𝑙).

Pargent et al.Page 5, 1 provide a description for each encoding methodology listed below.

Encoding Supervised? Implementation
Frequency N category_encoders.CountEncoder
Generalized Linear Mixed Model Y category_encoders.GLMMEncoder
James-Stein Y category_encoders.JamesSteinEncoder
Integer N sklearn.preprocessing.OrdinalEncoder
Target Y category_encoders.TargetEncoder

2 Michael Larionov. Sampling techniques in bayesian target encoding. CoRR, 2020. URL: https://arxiv.org/abs/2006.01317, arXiv:2006.01317.

2.1. When should you use this package? 7

https://arxiv.org/abs/2006.01317
https://arxiv.org/abs/2006.01317

Bayesian target encoding Documentation

2.1.4 Modeling algorithms

The following modelling implementations will be tested:

Package Class
LightGBM3 LGBMClassifier

LGBMRegressor
Scikit-Learn4 GradientBoostingRegressor

GradientBoostingClassifier
XGBoost5 XGBClassifier

XGBRegressor

2.1.5 Datasets

Regression

Below is a list of the regression datasets used for experimentationPage 5, 1.

OpenML ID Dataset name
41211 ames-housing
41445 employee_salaries
41210 avocado-sales
41267 particulate-matter-ukair-2017
41251 flight-delay-usa-dec-2017

Classification

OpenML ID Dataset name
40701 churn
41434 click_prediction_small

2.1.6 Performance evaluation

Pargent et al.Page 5, 1 discussed a three-phase approach for creating a baseline assessment of model performance. We’ll
adapt that here and use something slightly different. Baseline performance will be the average test score for a model
fitted using the standard bayesian target encoder. We will repeat each experiment with 5 different random seeds for the
train-test split.

Similar to Pargent et al.Page 5, 1, we will use root mean squared error (RMSE) for evaluating the performance of regres-
sion models and the area under the receiver operating characteristic (AUROC) for classification problems. Both metrics
are available in scikit-learn4 under the strings neg_root_mean_squared_error and roc_auc, respectively.

3 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: a highly efficient gradient
boosting decision tree. Advances in neural information processing systems, 30:3146–3154, 2017.

4 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

5 Tianqi Chen and Carlos Guestrin. XGBoost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ‘16, 785–794. New York, NY, USA, 2016. ACM. URL: http://doi.acm.org/10.1145/2939672.
2939785, doi:10.1145/2939672.2939785.

8 Chapter 2. Contents

https://www.openml.org/d/41211
https://www.openml.org/d/41445
https://www.openml.org/d/41210
https://www.openml.org/d/41267
https://www.openml.org/d/41251
https://www.openml.org/d/40701
https://www.openml.org/d/41434
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785

Bayesian target encoding Documentation

Since we will not be doing any hyperparameter optimization, we will express the change in performance using a per-
centage increase in the stated metric.

2.2 Encode your categorical variables

To encode your variables, you have to first choose a likelihood for your target.

Model type Description Likelihood
Classification Binary bernoulli

Multi-class multinomial
Regression normal

exponential
gamma
invgamma

Important: The normal likelihood assumes a known variance that is estimated from the training data. Similarly, the
gamma and inverse gamma likelihoods assume a known shape parameter. Both of these assumptions were made to
help make implementing the algorithm easier.

2.2.1 Basic usage

Once you’ve chosen your likelihood, import and fit the encoder on your data. Suppose you have X and y, with three
categorical columns: 1, 2, and 5.

import bayte as bt

encoder = bt.BayesianTargetEncoder(dist=...)
encoder.fit(X[:, [1, 2, 5]], y)

By default, when you transform the data

X_encoded = encoder.transform(X[:, [1, 2, 5]])

the encoding level will be the mean of the posterior distribution for the level. To sample, set sample=True on encoder
initialization.

Important: The encoder has support for joblib. Since the encoding procedure involves generating posterior parameters
for every categorical level in every supplied variable, it can be computationally inefficient if executed serially.

2.2. Encode your categorical variables 9

https://scikit-learn.org/stable/computing/parallelism.html

Bayesian target encoding Documentation

2.2.2 Changing hyperparameter initialization

If you want to change how the hyperparameters are initialized for a given likelihood, supply a callable for the
initializer argument. This callable must take the dist and the target values y and return a tuple of the param-
eters.

Important: Although you can change the initializer, your code will break if you try to implement a new likelihood.

2.3 Build a model through repeated encoding

In this guide, we will build an ensemble estimator using bayesian target encoding. First, initialize the bayte class for
your modelling problem your base estimator as well as an initialized encoder and the number of samples you want to
draw.

Classification

Regression

In this classification example, we will fit a logistic regression.

from sklearn.linear_model import LogisticRegression

import bayte as bt

estimator = bt.BayesianTargetClassifier(
base_estimator=LogisticRegression(),
encoder=bt.BayesianTargetEncoder(dist="bernoulli"),
n_estimators=10,

)

In this regression example, we will fit a simple linear model.

from sklearn.linear_model import LinearRegression

import bayte as bt

estimator = bt.BayesianTargetRegressor(
base_estimator=LinearRegression(),
encoder=bt.BayesianTargetEncoder(dist="gamma"),
n_estimators=10,

)

Next, call fit. The fit call accepts a categorical_feature parameter for specifying which features in the training
dataset should be encoded. If you are using a numpy.ndarray, specify the indices of the categorical columns. If you
are using a pandas.DataFrame, specify the column names. If not set, any pandas columns with a categorical data
type will be encoded; for numpy users, no supplied list indicates that all features are categorical.

estimator.fit(X, y, categorical_feature=[1, 2, 5])

For regression problems, predict will produce an average of each estimator prediction. For classification, predict
depends on an estimator initialization parameter called voting1:

1 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,

10 Chapter 2. Contents

Bayesian target encoding Documentation

voting value Description
hard (default)

The predicted class label is a majority vote of the
predicted labels from each estimator.

soft

The predicted class label is based on the sums of
predicted probabilities for each class.

For well-calibrated classifiers, soft voting is preferred.

2.4 Encoding algorithm

2.4.1 Refresher on bayesian statistics

In bayesian statstics, we have

𝑝(𝜃|𝑦) = 𝑝(𝑦|𝜃)𝑝(𝜃)
𝑝(𝑦)

where 𝑝(𝜃) is the prior distribution for parameter 𝜃, 𝑝(𝑦|𝜃) is the likelihood of 𝑦 given 𝜃, and 𝑝(𝜃|𝑦) is the poste-
rior distribution of parameter 𝜃 using 𝑦. In particular, we will focus on conjugate Bayesian models, where the prior
distribution and posterior distribution of 𝜃 are from the same family.

Example

Consider a situation where the target variable in our dataset is binary. This means that 𝑦1, ..., 𝑦𝑛 are independent and
identically distributed from a Bernoulli process where 𝜃, the probability of a 1, is unknown.

Using Fink’s Compendium of conjugate priors, the prior distribution of 𝜃 is a Beta distribution with hyperparameters
𝛼 and 𝛽. i.e., 𝜃 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽)

Since we are using a conjugate Bayesian model, the posterior distribution 𝑝(𝜃|𝑦) follows a𝐵𝑒𝑡𝑎(𝛼′, 𝛽′). Fink stipulates
that

𝛼′ = 𝛼+

𝑛∑︁
𝑖=1

𝑦𝑖

and

𝛽′ = 𝛽 + 𝑛−
𝑛∑︁

𝑖=1

𝑦𝑖

A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

2.4. Encoding algorithm 11

https://www.johndcook.com/CompendiumOfConjugatePriors.pdf

Bayesian target encoding Documentation

2.4.2 Procedure

Ok, let’s lay out the procedure for bayesian target encoding. Suppose you have 𝑛 training observations, with 𝑌 =
(𝑦1, ..., 𝑦𝑛) representing the target and categorical variable 𝑋1 = (𝑥1, ..., 𝑥𝑛) with distinct values 𝑉 = (𝑣1, ..., 𝑣𝑙).

1. Choose a likelihood for the target variable (e.g. Bernoulli for binary classification),

2. Derive the conjugate prior for the likelihood (e.g. Beta),

3. Use the training data to initialize the hyperparameters for the prior distribution (e.g. 𝛼 and 𝛽)1,

4. Derive the methodology for generating the posterior distribution parameters,

5. For each level 𝑣𝑖 ∈ 𝑉 ,

1. Generate the posterior distribution using 𝑦1, ..., 𝑦𝑚|𝑥𝑗 = 𝑣𝑖,∀𝑗 ∈ (1,𝑚),

2. Set the encoding value to a sample from the posterior distribution2

1 Initializing the hyperparameters is generally reliant on common interpretations.
2 If a new level has appeared in the dataset, the encoding will be sampled from the prior distribution.

12 Chapter 2. Contents

	Installation
	Contents
	When should you use this package?
	Encoder comparison
	Ensemble methodology
	Comparative encoding methodology
	Modeling algorithms
	Datasets
	Regression
	Classification

	Performance evaluation

	Encode your categorical variables
	Basic usage
	Changing hyperparameter initialization

	Build a model through repeated encoding
	Encoding algorithm
	Refresher on bayesian statistics
	Example

	Procedure

